Hi Michiel, John and Andrew,
I am now developing a fractional factorial design as per the following syntax, but have a few questions:
1.As I want to include a reference alternative, should I just include it in the alternatives above and not in the utility function? As i understand, a reference alternative will not affect choice option development in this case?
2.Attribute level dominance, I wanted to confirm whether the use of the asterix will still play any role in an orthogonal design development. I have reviewed the output and it does not seem to influence the scenarios.
3.Foldover effects - I have included the foldover condition to develop a design better suited for interactions. What has been you experience in using foldovers and do you see any value in its inclusion in a fractional factorial design?
Syntax is as follows:
Design
;alts = Base, Alt1*, Alt2*
;rows = 36
;orth = sim
;eff = (mnl,d)
;block = 8
;foldover
;model:
U(Alt1) = b1 * A[35,40,50,60] + b2 * B[16,12,8] + b3 * C[127.5,255,382.6] + b4 * D[0,18,36] + b5 * E[8,9,10]/
U(Alt2) = b6 + b1 * A[35,40,50,60] + b2 * B[16,12,8] + b3 * C[127.5,255,382.6] + b4 * D[0,18,36] + b5 * E[8,9,10]$
With the design appearing as follows:
Choice situation alt1.a alt1.b alt1.c alt1.d alt1.e alt2.a alt2.b alt2.c alt2.d alt2.e Block Foldover block
1 35 12 255 36 8 60 12 255 36 8 8 1
2 35 16 127.5 18 9 60 16 127.5 18 9 8 1
3 35 8 382.6 0 10 60 8 382.6 0 10 8 1
4 50 12 127.5 0 9 40 12 382.6 36 9 3 1
5 50 16 382.6 36 10 40 16 255 18 10 3 1
6 50 8 255 18 8 40 8 127.5 0 8 3 1
7 40 8 382.6 0 10 35 16 127.5 36 8 7 1
8 40 12 255 36 8 35 8 382.6 18 9 7 1
9 40 16 127.5 18 9 35 12 255 0 10 7 1
10 50 8 255 18 8 50 16 382.6 36 10 8 1
11 50 12 127.5 0 9 50 8 255 18 8 8 1
12 50 16 382.6 36 10 50 12 127.5 0 9 8 1
13 40 8 127.5 36 10 35 8 255 36 9 4 1
14 40 12 382.6 18 8 35 12 127.5 18 10 4 1
15 40 16 255 0 9 35 16 382.6 0 8 4 1
16 60 16 255 0 9 60 8 127.5 36 10 3 1
17 60 8 127.5 36 10 60 12 382.6 18 8 3 1
18 60 12 382.6 18 8 60 16 255 0 9 3 1
19 60 16 255 18 10 40 12 382.6 36 9 6 1
20 60 8 127.5 0 8 40 16 255 18 10 6 1
21 60 12 382.6 36 9 40 8 127.5 0 8 6 1
22 60 12 127.5 18 10 50 8 127.5 36 10 2 1
23 60 16 382.6 0 8 50 12 382.6 18 8 2 1
24 60 8 255 36 9 50 16 255 0 9 2 1
25 35 16 382.6 0 8 50 8 255 36 9 1 1
26 35 8 255 36 9 50 12 127.5 18 10 1 1
27 35 12 127.5 18 10 50 16 382.6 0 8 1 1
28 35 8 382.6 18 9 40 12 255 36 8 2 1
29 35 12 255 0 10 40 16 127.5 18 9 2 1
30 35 16 127.5 36 8 40 8 382.6 0 10 2 1
31 50 12 382.6 36 9 35 16 382.6 36 10 5 1
32 50 16 255 18 10 35 8 255 18 8 5 1
33 50 8 127.5 0 8 35 12 127.5 0 9 5 1
34 40 16 127.5 36 8 60 16 127.5 36 8 5 1
35 40 8 382.6 18 9 60 8 382.6 18 9 5 1
36 40 12 255 0 10 60 12 255 0 10 5 1
37 60 12 255 0 10 35 12 255 0 10 1 2
38 60 8 382.6 18 9 35 8 382.6 18 9 1 2
39 60 16 127.5 36 8 35 16 127.5 36 8 1 2
40 40 12 382.6 36 9 50 12 127.5 0 9 6 2
41 40 8 127.5 0 8 50 8 255 18 8 6 2
42 40 16 255 18 10 50 16 382.6 36 10 6 2
43 50 16 127.5 36 8 60 8 382.6 0 10 2 2
44 50 12 255 0 10 60 16 127.5 18 9 2 2
45 50 8 382.6 18 9 60 12 255 36 8 2 2
46 40 16 255 18 10 40 8 127.5 0 8 1 2
47 40 12 382.6 36 9 40 16 255 18 10 1 2
48 40 8 127.5 0 8 40 12 382.6 36 9 1 2
49 50 16 382.6 0 8 60 16 255 0 9 5 2
50 50 12 127.5 18 10 60 12 382.6 18 8 5 2
51 50 8 255 36 9 60 8 127.5 36 10 5 2
52 35 8 255 36 9 35 16 382.6 0 8 6 2
53 35 16 382.6 0 8 35 12 127.5 18 10 6 2
54 35 12 127.5 18 10 35 8 255 36 9 6 2
55 35 8 255 18 8 50 12 127.5 0 9 3 2
56 35 16 382.6 36 10 50 8 255 18 8 3 2
57 35 12 127.5 0 9 50 16 382.6 36 10 3 2
58 35 12 382.6 18 8 40 16 382.6 0 8 7 2
59 35 8 127.5 36 10 40 12 127.5 18 10 7 2
60 35 16 255 0 9 40 8 255 36 9 7 2
61 60 8 127.5 36 10 40 16 255 0 9 8 2
62 60 16 255 0 9 40 12 382.6 18 8 8 2
63 60 12 382.6 18 8 40 8 127.5 36 10 8 2
64 60 16 127.5 18 9 50 12 255 0 10 7 2
65 60 12 255 36 8 50 8 382.6 18 9 7 2
66 60 8 382.6 0 10 50 16 127.5 36 8 7 2
67 40 12 127.5 0 9 60 8 127.5 0 8 4 2
68 40 8 255 18 8 60 16 255 18 10 4 2
69 40 16 382.6 36 10 60 12 382.6 36 9 4 2
70 50 8 382.6 0 10 35 8 382.6 0 10 4 2
71 50 16 127.5 18 9 35 16 127.5 18 9 4 2
72 50 12 255 36 8 35 12 255 36 8 4 2
MNL covariance matrix:
Prior b1 b2 b3 b4 b5 b6
b1 0.000292 -0.000105 -2E-06 -8E-06 -0.001254 -0.000124
b2 -0.000105 0.002695 -5E-06 -1.7E-05 -0.00282 -0.000279
b3 -2E-06 -5E-06 3E-06 0 -5.9E-05 -6E-06
b4 -8E-06 -1.7E-05 0 0.000143 -0.000209 -2.1E-05
b5 -0.001254 -0.00282 -5.9E-05 -0.000209 0.013035 -0.003342
b6 -0.000124 -0.000279 -6E-06 -2.1E-05 -0.003342 0.083003
Thanks again for all your assistance. It is so valuable!
David
Fractional Factorial Design Syntax
Moderators: Andrew Collins, Michiel Bliemer, johnr
-
Michiel Bliemer
- Posts: 2057
- Joined: Tue Mar 31, 2009 4:13 pm
Re: Fractional Factorial Design Syntax
1. Orthogonal designs ignore reference alternatives; reference alternatives are only taken into account in efficient designs.
2. Dominance cannot be avoided with orthogonal designs; dominance can only be taken into account in efficient designs, and only if you have specified parameter priors (which you have not).
3. Foldover designs enable estimating two-way interaction effects. So if you suspect that you will be estimating one or more interaction effects, creating a foldover design is useful. You can block the foldover design in two.
2. Dominance cannot be avoided with orthogonal designs; dominance can only be taken into account in efficient designs, and only if you have specified parameter priors (which you have not).
3. Foldover designs enable estimating two-way interaction effects. So if you suspect that you will be estimating one or more interaction effects, creating a foldover design is useful. You can block the foldover design in two.
Re: Fractional Factorial Design Syntax
Thank you Michiel for the response!
The only other question I have is:
- Are there any issues in including both two way interactions and the fold over condition in the design development. Example syntax would be:
Design
;alts = Base, Alt1*, Alt2*
;rows = 36
;orth = sim
;eff = (mnl,d)
;block = 9
;foldover
;model:
U(Alt1) = b1 * A[35,40,50,60] + b2 * B[16,12,8] + b3 * C[127.5,255,382.6] + b4 * D[0,18,36] + b5 * E[8,9,10] + b7*A*B + b8*C*D /
U(Alt2) = b6 + b1 * A + b2 * B + b3 * C + b4 * D + b5 * E + b7*A*B + b8*C*D $
My rational being that I want to incorporate specific two-way interactions, but also develop a design that is able to estimate non-specified interaction effects?
Thanks again for all the assistance.
David
The only other question I have is:
- Are there any issues in including both two way interactions and the fold over condition in the design development. Example syntax would be:
Design
;alts = Base, Alt1*, Alt2*
;rows = 36
;orth = sim
;eff = (mnl,d)
;block = 9
;foldover
;model:
U(Alt1) = b1 * A[35,40,50,60] + b2 * B[16,12,8] + b3 * C[127.5,255,382.6] + b4 * D[0,18,36] + b5 * E[8,9,10] + b7*A*B + b8*C*D /
U(Alt2) = b6 + b1 * A + b2 * B + b3 * C + b4 * D + b5 * E + b7*A*B + b8*C*D $
My rational being that I want to incorporate specific two-way interactions, but also develop a design that is able to estimate non-specified interaction effects?
Thanks again for all the assistance.
David
Re: Fractional Factorial Design Syntax
hi David
The two are not necessarily mutually exclusive, so there is no harm in doing it.
John
The two are not necessarily mutually exclusive, so there is no harm in doing it.
John